Car repossession: Big Data +AI tools are not value-neutral

Does recent technology inherently favor capitalists over workers?

There is a lot of concern about AI potentially causing massive unemployment. The question of whether “this time will be different” is still open. But another insidious effect is gaining speed: putting tools in the hands of large companies that make it more expensive and more oppressive to run into financial trouble. In essence,  harder to live on the edges of “The System.”

  •  Cars with even one late payment can be spotted, and repossessed, faster. “Business has more than doubled since 2014….”  This is during a period of ostensible economic growth.
  • “Even with the rising deployment of remote engine cutoffs and GPS locators in cars, repo agencies remain dominant. … Agents are finding repos they never would have a few years ago.”
  • “So much of America is just a heartbeat away from a repossession — even good people, decent people who aren’t deadbeats,” said Patrick Altes, a veteran agent in Daytona Beach, Fla. “It seems like a different environment than it’s ever been.”
  • “The company’s goal is to capture every plate in Ohio and use that information to reveal patterns. A plate shot outside an apartment at 5 a.m. tells you that’s probably where the driver spends the night, no matter their listed home address. So when a repo order comes in for a car, the agent already knows where to look.”
  • Source: The surprising return of the repo man – The Washington Post

Continue reading

Elon Musk keeps making the same mistakes at Tesla

My friend at NYU, Prof. Melissa Schilling, (thanks, Oscar) and I have a running debate about Tesla. She emphasizes how smart and genuinely innovative Musk is. I emphasize how he seems to treat Tesla like another R&D driven company – but it is making a very different product. Melissa is quoted in this article:

Tesla risks a blowout as problems mount, but fans keep the hype machine in overdrive

Case in point: Tesla sent workers home, with no pay, for the production shutdown last week. My discussion is after the break.

During the pause, workers can choose to use vacation days or stay home without pay. This is the second such temporary shutdown in three months for a vehicle that’s already significantly behind schedule.

Source: Tesla Is Temporarily Shutting Down Model 3 Production. Again.

Continue reading

Tesla employees say Gigafactory problems worse than known

By now, Tesla’s manufacturing problems are completely  predictable. See my explanation, after the break. At least Wall St. is starting to catch on.
Also in this article: Tesla’s gigafactory for batteries has very similar problems. That  surprises me; I thought they had competent allies helping with batteries.

But one engineer who works there cautioned that the automated lines still can’t run at full capacity. “There’s no redundancy, so when one thing goes wrong, everything shuts down. And what’s really concerning are the quality issues.”

Source: Tesla employees say Gigafactory problems worse than known

Continue reading

It will be very tricky to test and regulate safety of self-driving cars

My friend Don Norman wrote an op-ed this weekend calling for an FDA-like testing program before autonomous cars are put on the roads in the US. Clearly, some level of government approval is important. But I see lots of problems with using drug testing (FDA = Food and Drug Administration) as a model.

Here is an excerpt from a recent article about testing problems with Uber cars, which were the ones in the recent fatal accident. After the break, my assessment of how to test such cars before they are allowed on American roads.

Waymo, formerly the self-driving car project of Google, said that in tests on roads in California last year, its cars went an average of nearly 5,600 miles before the driver had to take control from the computer to steer out of trouble. As of March, Uber was struggling to meet its target of 13 miles per “intervention” in Arizona, according to 100 pages of company documents obtained by The New York Times and two people familiar with the company’s operations in the Phoenix area but not permitted to speak publicly about it.Yet Uber’s test drivers were being asked to do more — going on solo runs when they had worked in pairs.And there also was pressure to live up to a goal to offer a driverless car service by the end of the year and to impress top executives.

So Uber car performance was more than 100 times worse than Waymo cars?!

Continue reading

Tesla once again doesn’t understand manufacturing

Once again, Tesla demonstrates no understanding of volume manufacturing!  Newspaper: “Tesla reworks 40% of its parts.” Tesla response: “But we inspect every car carefully before shipping it!”

Tesla fires back against a CNBC report that cited unnamed employees’ complaints about the electric carmaker cranking out a high number of parts that need to be repaired or replaced. Tesla say…

Source: Tesla: flawed parts report is flawed regarding cars’ quality

But as Deming and others pointed out decades ago, you cannot achieve good final quality by doing lots of inspection. There are many reasons for this, including that inspection/testing is not 100% accurate. The whole field of statistical process control, which eventually morphed into today’s “Six Sigma,” was invented as an alternative to massive inspection.

So if Tesla claims that it can make parts so poorly that 40% need rework, but still have defect-free cars, it is an admission of ignorance. This continues Tesla/Musk’s consistent pattern of not understanding that high volume manufacturing is not just “low volume manufacturing repeated many times.” (See my October post  about Tesla’s attempts to ramp up Model 3 production.)

My suggestion for people with a Model 3 on order: don’t expect it to be on time, or have good build quality. Sorry.

Lightweight startup ideas for new entrepreneurship course

I will be co-teaching, with Parand Darugar and Paul Kedrosky, a course on starting a company. This 10 week course requires each team to develop a real project, to the level that they can test it with potential customers. (Beta test, approximately.)

Doing this in 10 weeks can be daunting, but it can be done. I used to teach a course on hardware product development, which required working physical prototypes and 2 long reports in 10 weeks. This year we expect little or no hardware. Instead we are looking for web-enabled, mobile-enabled, or other service ideas with little or no associated hardware. What you will sell is some form of a system that fulfills a need.

Part of entrepreneurship is looking for, and “sensing,” unmet needs. Do this in your everyday life, in your courses, as you watch people on screens. Here are a few ideas to suggest how little is needed. Please, add your own. It’s ok to list an unmet need without saying how to solve it.

Classroom feedback using sheets of paper

A visual barcode based version of the teaching “clicker” that many classrooms use to gather real-time student feedback. Students hold up a piece of cardboard, which the faculty member scans with a phone. Why didn’t I think of that?  Get rid of the student-purchased hardware, and probably increase reliability at the same time. (Although I’m sure it sacrifices some capabilities of the electronic clickers.)plickers2

Search my many sources of free books

My wife and I read a lot of books, still. In the last 5 years a number of access methods for e-books have come along. I can buy ebooks from Apple, Amazon, or others. I can also borrow them free from my local library, Amazon Prime, scribd,  my employer (UCSD’s library) and probably some other services. Each service has its own catalog and its own ways of searching. Checking each of the free services is time consuming, and half the time none of them has what I want. Solve this pain! There are many ways to solve the pain, and the concept could be integrated with existing book services/systems in a variety of ways.