Would ‘explainable AI’ force companies to give away too much? Not really.

Here is an argument for allowing companies to maintain a lot of secrecy about how their data mining (AI) models work. The claime is that revealing information will put  companies at a competitive disadvantage. Sorry, that is not enough of a reason. And it’s not actually true, as far as I can tell.

The first consideration when discussing transparency in AI should be data, the fuel that powers the algorithms. Because data is the foundation for all AI, it is valid to want to know where the data…

Source: The problem with ‘explainable AI’ | TechCrunch

Here is my response.

Your questions are good ones. But you seem to think that explainability cannot be achieved except by giving away all the work that led to the AI system. That is a straw man. Take deep systems, for example. The IP includes:
1) The training set of data
2) The core architecture of the network (number of layers etc)
3) The training procedures over time, including all the testing and tuning that went on.
4) The resulting system (weights, filters, transforms, etc).
5) HIgher-level “explanations,” whatever those may be. (For me, these might be a reduced-form model that is approximately linear, and can be interpreted.)

Revealing even #4 would be somewhat useful to competitors, but not decisive. The original developers will be able to update and refine their model, while people with only #4 will not. The same for any of the other elements.

I suspect the main fear about revealing this, at least among for-profit companies, is that it opens them up to second-guessing . For example, what do you want to bet that the systems now being used to suggest recidivism have bugs? Someone with enough expertise and $ might be able to make intelligent guesses about bugs, although I don’t see how they could prove them.
Sure, such criticism would make companies more cautious, and cost them money. And big companies might be better able to hide behind layers of lawyers and obfuscation. But those hypothetical problems are quite a distance in the future. Society deserves to, and should, do more to figure out where these systems have problems. Let’s allow some experiments, and even some different laws in different jurisdictions, to go forward for a few years. To prevent this is just trusting the self-appointed experts to do what is in everyone else’s best interests. We know that works poorly!

Tesla employees say Gigafactory problems worse than known

By now, Tesla’s manufacturing problems are completely  predictable. See my explanation, after the break. At least Wall St. is starting to catch on.
Also in this article: Tesla’s gigafactory for batteries has very similar problems. That  surprises me; I thought they had competent allies helping with batteries.

But one engineer who works there cautioned that the automated lines still can’t run at full capacity. “There’s no redundancy, so when one thing goes wrong, everything shuts down. And what’s really concerning are the quality issues.”

Source: Tesla employees say Gigafactory problems worse than known

Continue reading

It will be very tricky to test and regulate safety of self-driving cars

My friend Don Norman wrote an op-ed this weekend calling for an FDA-like testing program before autonomous cars are put on the roads in the US. Clearly, some level of government approval is important. But I see lots of problems with using drug testing (FDA = Food and Drug Administration) as a model.

Here is an excerpt from a recent article about testing problems with Uber cars, which were the ones in the recent fatal accident. After the break, my assessment of how to test such cars before they are allowed on American roads.

Waymo, formerly the self-driving car project of Google, said that in tests on roads in California last year, its cars went an average of nearly 5,600 miles before the driver had to take control from the computer to steer out of trouble. As of March, Uber was struggling to meet its target of 13 miles per “intervention” in Arizona, according to 100 pages of company documents obtained by The New York Times and two people familiar with the company’s operations in the Phoenix area but not permitted to speak publicly about it.Yet Uber’s test drivers were being asked to do more — going on solo runs when they had worked in pairs.And there also was pressure to live up to a goal to offer a driverless car service by the end of the year and to impress top executives.

So Uber car performance was more than 100 times worse than Waymo cars?!

Continue reading

Hollywood as a model for academic research

Academia has a problem: the value, necessity, and practices of collaboration are increasing, but the system of giving credit is inadequate. In most fields, there are only 4 levels of credit:

  • None at all
  • “Our thanks to Jill for sharing her data.” (a note of thanks)
  • First Authorship (This is ambiguous: it may be alphabetical.)
  • Listed as another author

In contrast to this paucity, modern empirical paper writing has many roles. Here are a dozen roles. Not all of them are important on a single paper, but each of them is important in some papers.

  • Intellectual leadership.
    • Source of the original idea
  • Doing the writing
    • Writing various parts, e.g. literature review
    • Doing the grunt work on the stat analysis. (Writing and running the R code)
    • Doing the grunt work of finalizing for publication. (Much easier than it used to be!)
    • Dealing with revisions, exchanges with editors, etc.
  • Source of the data.
    • Funder of the data
  • Raised the funding;
    • Runs the lab where the authors are employed
    • Source of the money: usually an agency or foundation, but sometimes the contracting author is listed as a coauthor.

Continue reading

Continuing problems with Tesla 3: Musk doesn’t understand manufacturing

It has always been clear that Musk does not understand high-volume manufacturing. Building rockets is very hard, but building 100,000 cars is very hard for a different reason! His predicted ramp rate was absurd. In the last 6 months, I think he has started to realize this.

Tesla has little chance of hitting its 5,000 weekly output during the fourth quarter. The chief reason: Its current production line can’t build vehicles at that rate unless it runs two 10-hour shifts seven days a week, which is unlikely. impossible.

Source: Tesla | Hiccups Threaten to Slow Model 3 Launch | Industry content from WardsAuto

According to the article, Tesla has also deliberately ignored much of the accumulated wisdom about how to ramp in auto production. That might be OK for his second high-volume vehicle.

More details on Tesla’s ramp plans:

Manufacturing expert says Tesla Model 3 plan to skip beta testing is risky

Tesla now has 2 choices, both bad:

  1. Go ahead and start building and shipping as fast as possible. The result will be multiple problems that require expensive hardware recalls.
  2. Add another 6? months to the schedule to run the as a pilot line for learning, rather than for volume. Expect zero salable output during that period. (As one of the comments said, they can give/sell those cars to employees.)

Added December 27: Tesla “still in manufacturing hell.”

Latest of many articles about Tesla manufacturing problems.

Here is a comment on that article: Musk  needs to face up to having made a MAJOR mistake when he skipped some steps in the original manufacturing ramp-up.
He is probably also making another major mistake at present: adding new machines to the manufacturing process, before he has the existing machines working perfectly. This seems logical to people with no manufacturing experience, but it does not work. For one thing, it diverts his key resource, which right now is manufacturing engineers.

When Am I Committed to Collision? A case of art going toward science, but only very slowly.

According to the author, naval ship handling still relies heavily on craft expertise. His article writes down some formulas and procedures to reduce collision risk.  Source: When Am I Committed to Collision? | U.S. Naval Institute  My own reaction is in a brief comment at the end of the article.

Here is another article in the same issue of US Naval Institute Proceedings that does a great job of explaining how collisions can happen, and why the captain of a USN ship is always responsible, and never completely safe.

This is the burden of command. A captain puts the lives of several hundred sailors into the hands of a young officer, typically 25 years old and typically green. So what does a captain count on to prevent disaster? The captain has “standing orders.” These are the rules in his or her ship that everyone (especially the OOD) lives by. …”

Can Elon Musk Get SolarCity’s Gigafactory Back On Track?

Elon Musk clearly has a blind spot about manufacturing. Building a giant factory for the first use of a new process does not work, and theoretically it cannot work. Even if it did work, it would be non-competitive. Once a factory is built and machines installed, subsequent new discoveries/knowledge cannot be incorporated, except at the margins.

To reach the 100-megawatt goal, sources indicate that the pilot production line in Fremont would eventually need to yield between 800 to 1,000 high-efficiency Whitney panels per day. But the team was not able to automate the process consistently enough to produce more than dozens of Whitney panels per day, according to people familiar with the matter. Most of the production resulted in “scrap,” they say. “The big problem was simply that they couldn’t scale up the technology to the point where you could run it in a factory,” a source familiar with the development explains.

Source: Can Elon Musk Get SolarCity’s Gigafactory Back On Track?

Continue reading